Exam Seat No:

____ **C.U.SHAH UNIVERSITY Summer Examination-2019**

Subject Name: Theories of Ring and Field Subject Code:5SC03TRF1 Semester: 3 Date:18/03/2019

Branch: M.Sc. (Mathematics) Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a.	Define: Ring	1
	b.	Define: Integral Domain	1
	c.	Define: Field	1
	d.	Define: Isomorphism of ring	1
	e.	Define: Subring	1
	f.	Is $Z \times Q$ an integral domain? Justify your answer.	2
Q-2		Attempt all questions	(14)
	a.	State and prove Unique factorization theorem.	6
	b.	Prove that every finite integral domain is a field.	5
	c.	How many subring of order 7 in Z_{49} ? Justify.	3
		OR	
Q-2		Attempt all questions	(14)
	a.	If <i>a</i> is an element in a commutative ring <i>R</i> with unity then prove that the set $S = \{ra \mid r \in R\}$ is a principal ideal of <i>R</i> generated by <i>a</i> .	6
	b.	Prove that characteristic of an integral domain is either zero or prime number.	5
	c.	If <i>U</i> is an ideal of <i>R</i> with unity and $1 \in U$ then prove that $U = R$	3
Q-3		Attempt all questions	(14)
	a.	Let F be a field and $f(x)$, $g(x)$ be any two polynomials in $F[x]$ not both of which are zero. Then prove that greatest common divisor $d(x)$ of f(x) & g(x) can be expressed in the form $d(x) = m(x)f(x) + n(x)g(x)$ for $m(x), n(x) \in F[x]$	6
	h	State and prove Remainder theorem	4
	с.	If $f(x) = 3x^7 + 2x + 3$ and $g(x) = 5x^3 + 2x + 6$ be two polynomials	4
		ever the field $(7 + x)$ Find $(i) \stackrel{d}{=} (f(x)) (ii) f(x) g(x)$	•
		$\int \int dx (x, y) ($	
		OR	

Q-3		Attempt all questions	(14)
	a.	State and prove division algorithm for polynomials over field.	7
	b.	Prove that intersection of two left ideal of a ring is again a left ideal of	4
		ring.	
	c.	Prove that characteristic of a ring with unity is 0 and $n > 0$ where 0 and n	3
		are order of 1 in additive group	
		SECTION – II	
Q-4		Attempt the Following	(07)
	a.	Define: Left Ideal.	1
	b.	Define: Principal Ideal Ring.	1
	c.	Define: Euclidean Ring.	1
	d.	Define: Fixed field	1
	e.	State Factor theorem.	1
	f.	Define: Perfect field.	1
	g.	Define: Automorphism of field.	1
Q-5		Attempt all questions	(14)
	a.	Prove that $F[x]$ is a principal ideal ring.	6
	b.	Let R be Euclidean ring. Let a and b be two non-zero elements in R . If b is	5
		not unit in R then prove that $d(b) < d(ab)$.	
	c.	Prove that every field is a Euclidean ring.	3
		OR	
Q-5		Attempt all questions	(14)
	a.	Prove that ring of Gaussian integer is a Euclidean ring.	6
	b.	Prove that every Euclidean ring is a principal ideal ring.	5
	c.	Prove that every Euclidean ring possesses unity.	3
Q-6		Attempt all questions	(14)
	a.	State and prove fundamental theorem on Galois theory.	7
	b.	State and prove Gauss Lemma.	5
	c.	Define: Splitting field. Give one example.	2
		OR	
Q-6		Attempt all Questions	_
	a.	Let <i>K</i> be field of complex number and <i>F</i> be the field of real numbers then	5
	_	prove that K is a normal extension of F.	_
	b.	Let K be an extension field of rational numbers Q . Show that any	5
		automorphism of K must leave every element of Q .	-
	c.	Let G be a subgroup of the group of all automorphisms of a field K . Then	4
		prove that the fixed field of G is a subfield of K.	

